Допплеровский измеритель скорости кровотокаСтраница 14
Так как амплитуда принятого продетектированного сигнала определяется мощностью излученного ультразвука, а из-за импульсного характера излучения при одинаковой амплитуде излучаемых сигналов непрерывно-волнового и импульсного приборов средняя излучаемая мощность последнего будет меньше, то на УМ импульсного тракта подается большее напряжение питания, по сравнению с непрерывно-волновым режимом для обеспечения поддержания уровня средней интенсивности излучаемого сигнала в импульсном режиме. УЗ датчик импульсного прибора представляет собой один пьезоэлектрический элемент, совмещающий функции приема и передачи, разнесенные во времени. Приемный тракт должен обеспечивать защиту входного каскада от перегрузок во время излучения.
В целом, работа импульсного УЗ допплеровского прибора аналогична работе радиолокационной станции обнаружения движущихся целей. Практически весь математический аппарат и многие схемотехнические решения, наработанные в военной области, без каких-либо изменений могут быть использованы в медицине и наоборот. В этом заключается смысл так называемых двойных направлений, развитие которых имеет огромное научное и практическое значение.
Синхронный квадратурный детектор и блок выделения информации о направлении кровотока
Описанные выше приборы не сохраняют информацию о направлении кровотока, а дает лишь величину сдвига частоты. Информация о направлении необходима, чтобы следить за изменением скорости кровотока в течении кардиоцикла в тех сосудах, где возникает обратный кровоток, или если направление кровотока несет диагностическую информацию, например, при исследовании вен при недостаточности сердечных клапанов .
Для того, чтобы разделить сигналы, несущие информацию о прямом и обратном кровотоке, наиболее широко в современных приборах применяется квадратурная демодуляция (рис. 1.23.).
Рис. 1.23 Блок схема квадратурного демодулятора
Х – перемножители, ПФ – полосовые фильтры.
Усиленный сигнал с выхода предварительного усилителя 3 (рис 1.21, 1.22) подается на два перемножителя Х, выполняющих роль детекторов, на управляющий вход одного из которых подается сигнал с выхода опорного генератора , на управляющий вход другого – сигнал, сдвинутый относительно первого на , т.е. . Таким образом, на выходе одного из каналов присутствует синфазный сигнал , описываемый (5), на выходе второго – квадратурный сигнал , имеющий вид:
или (6)
Знак допплеровского сдвига, а значит, и направление кровотока определяется по соотношению фаз прямого (синфазного) и квадратурного каналов. Если этот сдвиг положителен, то квадратурный сигнал отстает на от синфазного, и опережает в противном случае.
Из выражений (5) и (6) следует, что для разделения сигналов необходимо “сдвинуть” один из каналов относительно другого на , а затем произвести суммарно-разностную операцию над полученными сигналами.
Из предложенных до сих пор методов разделения сигналов прямого и обратного кровотока наибольшее развитие получили 2 метода:
· обработка прямого и квадратурного канала в фазовой области;
· применение цифровой обработки сигналов и, в частности, фильтра Гильберта.
Первый метод поясняется на рис.1.1.7.2.3.
Рис. 1.24 Выделение сигналов прямого и обратного кровотока в фазовой области.